A FORTRAN PROGRAM FOR COMPUTATION OF MASS IN EARTH ORBIT REQUIRED FOR INTERPLANETARY MISSIONS

By Samuel W. Pitts and Alfred C. Mascy

NASA Headquarters Mission Analysis Division Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

A FORTRAN PROGRAM FOR COMPUTATION OF MASS IN EARTH

ORBIT REQUIRED FOR INTERPLANETARY MISSIONS

By Samuel W. Pitts and Alfred C. Mascy

NASA Headquarters Moffett Field, Calif.

SUMMARY

A necessary parameter to be investigated in the analysis of space missions is the total assembled mass in Earth orbit, as it is a strong indicator in comparisons of the performance of various propulsion systems. The computer code described in this paper was designed to compute the mass in Earth orbit for round-trip stopover missions, flyby missions, and orbiter missions with a single-stage high-thrust system for each propulsive phase. The actual gravity losses suffered during each propulsive phase are computed by complete integration of the equations of motion, thereby permitting the propulsion system to be optimized. The program allows the input of planet ephemeris data so that it may be used for any planet. The following options are available to the user.

The number of engines may be specified or optimized for each propulsive phase of the mission.

Planet capture may be performed by aerobraking or propulsive maneuvers.

A specific number of engines/tanks may be specified.

The engine burn time may be constrained to a desired value.

Midcourse correction penalty may be specified.

Time dependent life support may be included for manned missions.

The inert weight fractions may be specified as constants or computed by the program.

An engine clustering penalty may be specified.

Arrival or departure or both from elliptical orbits may be specified.

Thrust may be initiated or terminated at points other than periapsis.

Perturbing of the parking orbit may be investigated, i.e., by using an apoapsis kick.

Each phase of a mission may be run independently.

Thrust vector orientation other than tangential may be specified.

Examples provided include the complete input and output for a round-trip mission, a flyby mission, and an orbiter mission.

TNTRODUCTION

The analytical computation of the assembled mass in Earth orbit for space missions is time consuming and difficult. Approximations are used in such computations for the gravity losses suffered during propulsive phases, the inert weight scaling laws, etc. Therefore, a computer code employing numerical integration of the equations of motion, optimization procedures on several variables, and iterative procedures for inert calculations has been developed that enables the user to compute accurately the mass in Earth orbit for round-trip missions, orbiter missions, and flyby missions.

The flyby type mission consists of one single propulsive phase, Earth departure, and is assumed to place a specified weight on a heliocentric flyby trajectory. The orbiter type mission consists of two phases, Earth departure and planet capture. Both phases may be propulsive or the capture phase may be performed by an aerobraking maneuver. A midcourse correction fuel penalty may be provided.

The round-trip stopover mission has three phases, Earth departure, planet capture, and planet departure, and includes a provision for an excursion module for landing on the target planet. The excursion module weight must include the propulsion necessary to descend to and ascend from the planet and any staged weight left at the planet (i.e., small probes). The Earth return weight would include the mission module Earth entry vehicle and time dependent expendables (e.g., life support). Any propulsion fuel consumed in midcourse can be included. This computer code has been written in Fortran IV and has been used on a 7094 computer. The fact that Fortran IV was used as a program language should make it applicable to other types of computing equipment.

Required program input, output, example problems and the program listings are included here as appendixes A-D, respectively.

ANALYSIS

Method of Solution

The procedures for computing total assembled mass in Earth orbit for round trip stopover missions, orbiter missions, and flyby missions are outlined in this paper. The program performs the calculations for the round trip missions in three distinct phases (i.e., phase I, planet departure, phase 2, planet capture, and phase 3, Earth departure), starting with the Earth return weight and working in reverse order through the total missions. The orbiter mission consists only of phases 2 and 3 and a flyby mission only of phase 3. The inputs that the user must provide include propulsion system characteristics (e.g., engine weight, engine thrust), trajectory data (e.g., V_{∞} , orbit altitudes), mission module weights, staged weights at planet and time dependent expendables (e.g., life support). A complete listing of all required and optional input is included in appendix A.

The actual gravity losses suffered during each propulsive phase of a mission are computed by numerical integration of the equation of motion in order to determine the optimum ratio of thrust to weight of each stage, the inert fractions, propellant consumption, and the engine burn times. The programs also have an option that allows the mass in Earth orbit to be computed by the closed form ballistic equations rather than integration of the equations of motion, and includes an approximation for the gravity losses in a separate subroutine. Other available options are described in the section Program Options.

This computer code is capable of computing four separate types of missions. The mission type must be specified by the input parameter MODE as follows:

MODE = 1 Round trip stopover missions

MODE = 2 Orbiter missions

MODE = 3 Flyby missions

MODE = 4 Only the planet capture phase is computed

The method of solution described below is for a round trip stopover mission with a specified Earth return module which contains an Earth entry vehicle. Starting with the Earth return module the program works through the mission profile in reverse order in the following manner. The planet departure payload is set equal to the weight of the Earth return module plus the midcourse fuel and time dependent expendables. An initial estimate of the ratio of total engine thrust to total vehicle weight is computed by the program for the planet departure phase. This initial estimate is computed from the closedform ballistic equation with no gravity losses. The trajectory is then integrated using the estimated T/W_1 until the specified hyperbolic excess velocity for planet departure is obtained, at which time the propulsive factor P is computed.

$$P = \frac{1.0 + (WE/WL)}{MFST (1 + A) - A}$$

where

WE engine weight

WL Earth return weight + time dependent expendables + midcourse fuel

A inert fraction (either input or allowed to be computed)

MFST propellant consumed during powered phase

and

 $MFST = 1.0 - \frac{T/W * t}{Isp}$

T/W engine thrust/gross weight of vehicle

t burn time, sec

Isp specific impulse, sec

This propulsion factor is then multiplied by the returned payload weight to arrive at a total gross weight of the stage based on the previous integration. Forming the T/W_2 based on the new found gross weight of the stage, the program compares the initial estimate for T/W_1 to the T/W_2 computed to see whether the two values agree within a desired tolerance. If the values disagree by more than the desired tolerance, the trajectory is rerun with T/W_2 and the iteration continues until convergence is obtained. The value of the gross weight, WG = P * WL, is then taken as the gross weight of the planet departure stage. The ratio of propellant weight to gross weight WP/WG is given by WP/WG = 1.0 - MFST and the weight of propellant is computed from WP = WP/WG * WG. The weight of the inerts (less the engines) is found from WT = WP * A where A is the inert fraction computed from the scaling law equations or is an input constant.

The payload weight of the capture phase of the mission is set equal to the gross weight of the planet departure phase plus the weight of any payload left at the planet.

$$WLl = WG + WEM$$

where WEM is the weight of staged payload (e.g., planet excursion module). An initial weight of propellant is assumed by the program and the initial estimate for the WTG, inert weight, is made, using the inert fraction computed from the scaling laws. Using these initial estimates, an estimate of the total gross weight of this stage less the propellant is given by

$$WGL = WLl + WE + WTG$$

where

WE weight of engines

WIG initial estimate of inert weight (less engine)

WLl gross weight of departure stage + staged payload.

The value of WG2 is used to form the thrust-to-weight ratio to start the integration procedure. The equations of motion are integrated using negative time until the desired hyperbolic excess velocity, V_{∞} , is obtained for the capture phase. The use of -t in the integration allows the equation

MFST = 1.0 -
$$(T/W * t/Isp)$$

to add propellant to the vehicle as the trajectory is computed in reverse order starting from the low capture orbit. When the desired $\,V_\infty\,$ is obtained the propulsive factor $\,P\,$ is computed

$$P = \frac{1 + (WE/WL1)}{(1.0/MFST)(1.0 + A) - A}$$

The product P * WLl then gives the total weight, WBO, of the capture stage prior to the start of the capture maneuver. The total weight of propellant used during the capture phase is

$$WFC = WBO - WG2$$

and the weight of the inerts (less the engine), WTC, is

$$WTC = WPC * A$$

where A is the inert fraction. This value of WTC is compared to the initial guess WTG to see whether the values are within the desired tolerance. If the tolerance is met, the gross weight of the capture phase of the mission is the WBO found. If the tolerance is not met, WTC is used as the next guess of WTG and the iteration continues until convergence is obtained.

When the third phase of the mission, Earth departure, is initiated, the gross weight of the capture phase of the mission is used as a base weight and is increased as follows. The payload of the third phase is

$$WLE = WBO + WM + WLS$$

where

WBO gross weight of capture phase

WM weight of midcourse fuel

WLS weight of time dependent expendables (e.g., life support)

This value of WLE is then used to form the thrust/weight needed to start the integration of the equation of motion for the Earth departure phase. The iteration procedure described in the planet departure phase of the mission is the same employed for the Earth departure and all values of inert weights, propellant weights and gross weights are found by the same method.

Program Options

There are several options in this computer code that are available to the user. They are listed here and explained further in the section devoted to the computer input.

- (1) A limit on engine operating time has been set in the program to 1800 sec. This may be changed by reading in TLIMIT equal to the desired operating time limit in seconds. When this limit is exceeded, the number of engines used is increased by one until the operating time constraint is met.
- (2) The number of engines used per propulsive phase may be fixed or optimized at the discretion of the user. When a fixed number of engines is to be used (no optimization), set SEARCH = 0 and NØE1, NØE2, NØE3 equal to desired number of engines. (Here and in the following 1, 2, and 3 refer to planet departure, planet capture, and Earth departure maneuvers, respectively.) The computer code will not change the number of engines specified unless the operating time limit is exceeded; therefore, set TLIMIT to a large positive number if no operating limit is desired. The user may set SEARCH = 1 and the engine optimization procedure is followed; that is, the number of engines specified by NØE1, NØE2, NØE3 is used as a starting base and the number of engines is reduced by one until a minimum gross weight is obtained. The optimum number of engines is then output with the associated gross weight. The operating time limit will also be a factor and should be set to the desired limit when optimizing the number of engines.
- (3) Either a specific engine thrust level may be used as noted in (2) above, or the engine may be "rubberized" as follows: Estimate a total thrust level needed for the phase of the mission being computed. Divide this thrust level by the value of NØE1, NØE2, or NØE3 pertinent to the mission phase and set ET1, ET2, or ET3 equal to the thrust thus obtained. Also, set SEARCH = 1, allowing the program to optimize the number of engines. If the output lists the number of engines as 1, choose a lower thrust per engine and rerun the problem. If the number of engines is equal to the input value, choose a higher thrust per engine and repeat the run. When the output number of engines is greater than 1 and less than the input value, the number of "rubberized" engines has been optimized.

- (4) Aerobraking for the capture phase of a mission may be used by setting IAER ϕ = 2 and assigning a heat shield penalty to the incoming vehicle weight. If a penalty of 15 percent of the vehicle weight was desired, the user would input AER ϕ P = 1.15.
- (5) The inert fraction (less the engine) may be an input or may be computed in the program from the following equations which were developed by United Aircraft Corp. under contract NAS 2-2928. Tankage structure weight WS:

$$WS = \frac{A*TN^{O\cdot 1}}{\sigma^{O\cdot 533}} WP^{O\cdot 9} + K_1 TN^{O\cdot 1}$$

where

A constant

σ specific gravity of propellant

K₁ constant for fixed weights

WP propellant weight

TN number of tanks

The number of tanks is set initially at 1.0. If the user specifies the number of engines per tank, NET1, then the program will determine the optimum number of tanks as well as the optimum number of engines. If a value for NET1, NET2, or NET3 is not read as input, the program will compute the mission using one single tank for each phase that has not specified a particular number of engines per tank.

(6) Boil off and thermoinsulation for cryogenic tanks

WBO + W₁ = B
$$\left(\frac{\text{WP}}{\sigma}\right)^{2/3} \left(\frac{\text{t}\Delta T}{L}\right)^{1/2}$$

where

B constant in kms system

WP weight of usable propellant

σ specific gravity of propellants

t time of exposure, days

L latent heat of vaporization, kms system

ΔT temperature difference across insulation thickness

(7) To avoid integration of micrometeoroid impacts with respect to exposure time in estimating weight of meteoroid protection, and at the same time include the effects of the relatively large fluxes of debris in the asteroid belt, the following approximate equation has been used:

$$WM = C \left(\frac{WP}{\sigma}\right)^{5/6} t^{1/4}$$

The choice of the values assigned to the constant, C, should distinguish between missions to regions of the solar system inside and within or beyond the asteroid belt. The following values of C are suggested.

	Parameter C		
	0 to 1.8 A.U.	1.8 A.U. & beyond	
II-i ~l-	0.06	0.10	
High Nominal	0.06 .03	0.10 .05	
Low	.015	.025	

These values of C are for single-sheet thicknesses, with time t measured in hours. Inasmuch as the tank structure WS affords some protection against meteoroid penetration, only an additional weight, ΔWM , need to be added to the tank structure. If the calculated meteoroid protection, WM, is less than the tank structure, WS, no additional weight is added to the tank. If WM is greater than WS but less than 1.33 WS, additional weight, $\Delta WM = WM - WS$, is added to the single tank sheet. If the required meteoroid protection is greater than 1.33 WS, a second tank sheet is used to construct a Whipple bumper with the additional weight $\Delta WM = WS/3$.

- (8) For arrival at or departure from elliptical orbits the periapsis and apoapsis radii (RPP and RAP, respectively) are specified. If the true anomaly is not specified, the program will initiate thrust at the periapsis. To terminate or initiate thrust at points along the orbit other than periapsis TLT1, TLT2, and TLT3 must be specified equal to the desired true anomaly.
- (9) The user may also perturb the parking orbits by such maneuvers as an apogee kick by placing KICK1, KICK2, or KICK3 equal to the change in periapsis radius desired at the respective orbit.
- (10) If fixed inert fractions rather than calculated inerts are desired, simply place ACOMP = 1 and input the desired inert fractions Al, A2, and A3.
- (11) A fixed Earth departure stage, such as a Saturn SII, may be treated by placing AT3 = 0.0 and WK3 = 37500.0 which is approximately the fixed tank inerts on an SII stage. With ACOMP = 2, this same procedure may be used at any phase of the mission.
- (12) A useful option at the user's command is the ability to operate the program at two different levels of accuracy. With LEVEL = 1, all propulsive phases of the mission are computed in closed form with an estimate of the

gravity losses, which is an empirical curve fit to the results of reference 1. With LEVEL = 2, all propulsive phases are computed with a complete integration of the equations of motions. The first level is useful for scanning many missions because of the minimal machine time. The second level, although somewhat longer in computer time, allows a more exacting analysis of a mission. LEVEL = 2 is built into the code and will perform the integrations if it is not changed by the input LEVEL = 1 as noted above.

(13) A clustering penalty of 10 percent per additional engine has been included in the program but may be changed by input. If for example a 12-percent penalty were to be used, set PEN = 0.12 in the mission data input.

General Comments

Stacked cases. - Cases may be stacked by simply placing an asterisk card between each set of input. Only those input quantities which are to be changed need be added after the asterisk. If no input is read for the inert calculation, two (2) asterisk cards must follow the stacked mission data.

Perturbed inputs. The program will utilize the last input card encountered for a given parameter in its analysis. Hence, if a case requires the changing of one or more input cards from a prior case, one can simply place the desired changes on a card at the end of the pertinent input and it will utilize these latter values in the analysis. Thus, whole problem decks can be duplicated for stacked cases and perturbations made using supplementary cards without having to repunch the original problem deck.

All the variables in the Input Parameter List, appendix A, have been given mode numbers in the left-hand column, i.e., 1, 2, 3, 4. These refer to the type mission requiring that particular variable. The four modes are as follows:

 $M\phi$ DE = 1 Round-trip mission (all variables marked 1)

MØDE = 2 Orbiter mission (all variables marked 2)

MØDE = 3 Flyby mission (all variables marked 3)

MØDE = $\frac{4}{4}$ The capture phase only is computed (all variables marked $\frac{4}{4}$).

It should be noted that some of the variables are needed for all four mission modes while some are only necessary for one particular mission mode. Mode 4 may be used for investigation of propulsion system characteristics for the capture phase only. If a survey of only the departure phase is desired, the user may set MODE = 3, and GSE, RGE, RPE and RAE equal to the departure planet's respective values.

National Aeronautics and Space Administration Moffett Field, Calif., 94035, Nov. 7, 1967 789-40-01-08-00-15

REFERENCE

1. Long, R. S.: Escape from a Circular Orbit with Finite Velocity at Infinity. Astronautica Acta, Sept. 1958.

APPENDIX A

INPUT PARAMETERS

Mode	Variable name	Description
٦	EN.77	Waight / ongine lb planet demont
1	EW2	Weight/engine, 1b, planet depart
1, 2, 4		Weight/engine, lb, planet capture
1, 2, 3	EW3	Weight/engine, lb, Earth depart
1	ET1	Thrust/engine, lb, planet depart
1, 2, 4	ET2	Thrust/engine, lb, planet capture
1, 2, 3	ET _/ 3	Thrust/engine, lb, Earth depart
1 .	NØEL	Number of engines, planet depart
1,2,4	nøe2	Number of engines, planet capture
1,2,3	NØE3	Number of engines, Earth depart
1	Il	Isp, sec, planet depart
1, 2, 4	I 2	Isp, sec, planet capture
1, 2, 3	I3	Isp, sec, Earth depart
1	Al	Inert fraction (less engine), planet depart
1, 2, 4	A2	Inert fraction (less engine), planet capture
1, 2, 3	А3	Inert fraction (less engine), Earth depart
1	v8cøl	V_{∞} , km/sec, planet depart
1, 2, 4	v8 cø ≥	V _m , km/sec, planet capture
1, 2, 3	v8 cø 3	V_{∞}^{∞} , km/sec, Earth depart
1	MCPFl	1.XX - midcourse correction penalty,
		inbound leg
1, 2, 3	MCPF	1.XX - midcourse correction penalty,
-, -, 3	*****	outbound leg
1, 2, 3, 4	WPL	Weight of MM + EEM, etc., lb
1	WEM	Weight of MEM, 1b
1, 2, 3, 4	GSE	"g" at Earth, km/sec ²
1, 2, 3, 4		Apogee of departure orbit at Earth, \oplus radii
1, 2, 3, 4	RPE	Perigee of departure orbit at Earth, ⊕ radi:
1, 2, 3, 4	RGE	Radius of Earth, km
1, 2, 4	RAP	Apogee of capture orbit at planet, planet
		radii
1,2,4	RPP	Perigee of capture orbit at planet, planet radii
1, 2, 4	RGP	Radius of destination planet, km
1, 2, 4	GSP	"g" at destination planet, km/sec ²
1	FELLØW	Number of men
1	LEGTL	Inbound leg time, days
1	LEGT2	Outbound leg time, days
1.	LSD	Life support requirements, lb/man-day
1, 2, 4	AER Ø P	1.XX - penalty for aerobraking at destina-
⊥, ∠, +	HRIME	tion planet
1, 2, 3, 4	SEARCH	0 - will not optimize number of engines but
~, <i>~</i> , <i>)</i> , <i>~</i>	DEMIOII	use input values
		l - will optimize number of engines

1, 2, 3, 4	AC ∮ M₽	1 - will use fixed inerts2 - will calculate inerts using inert subroutine
1, 2, 4	IAERØ	 1 - propulsive capture at destination planet 2 - aerobraking at destination planet
1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3 1, 2, 3	PEN TLIMIT NET1 NET3 MØDE LEVEL	Engine clustering penalty Maximum allowable engine burn time, sec Number of engines/tank, planet departure, XX.X Number of engines/tank, planet capture, XX.X Number of engines/tank, Earth departure, XX.X The type mission to be computed 1 - propulsive phases computed in closed
1, 2, 3, 4		form with approximation for gravity loss 2 - propulsive phases computed by numerical integration of equation of motion
1	KICK1	Desired % change in periapsis radius, planet depart
1,2,4	KICK2	Desired % change in periapsis radius, planet capture
1, 2, 3	KICK3	Desired % change in periapsis radius, Earth depart
1	TLT1	True anomaly at initiation of thrust, planet depart, deg
1, 2, 4	TLT2	True anomaly at initiation of thrust, planet capture, deg
1, 2, 3	TLT3	True anomaly at initiation of thrust, Earth depart, deg
1, 2, 3, 4	*	An asterisk in any column (1-72) will terminate the reading of the above mission data.

The following input quantities are used in the inert calculations. This data must follow the above mission data. If $AC\phi MP = 1$ in input above, the constant inert fractions Al, A2, A3 above are used, and the following input may be deleted.

1 1, 2, 4 1, 2, 3	SIG1 SIG2 SIG3 AT1	Propellant specific gravity, planet depart Propellant specific gravity, planet capture Propellant specific gravity, Earth depart Constant (A) in tankage equation, planet depart
1, 2, 4	AT2	Constant (A) in tankage equation, planet capture
1, 2, 3	AT3	Constant (A) in tankage equation, Earth depart
1	в ø1	Constant (B) in boil off equation, planet depart
1, 2, 4	B Ø 2	Constant (B) in boil off equation, planet capture
1, 2, 3	BØ3	Constant (B) in boil off equation, Earth depart

1	CMl	Constant (C) in meteoroid equation, planet depart
1, 2, 4	CM2	Constant (C) in meteoroid equation, planet capture
1, 2, 3	CM3	Constant (C) in meteoroid equation, Earth depart
1	TEMPl	ΔT in boil-off equation, ${}^{O}K$, planet depart
1, 2, 4	TEMP2	ΔT in boil-off equation, OK, planet capture
1, 2, 3	TEMP3	ΔTin boil-off equation, ^O K, Earth depart
1	HEATL	Propellant latent heat of vaporization (L)
		in boil-off equation, kcal/kg, planet
		depart
1, 2, 4	HEAT2	Propellant latent heat of vaporization (L) in
		boil-off equation, kcal/kg, planet capture
1, 2, 3	HEAT3	Propellant latent heat of vaporization (L) in
		boil-off equation, kcal/kg, Earth depart
1	TEXL	Exposure time (t) boil-off and meteoroid
		equation, days, planet depart
1, 2, 4	TEX2	Exposure time (t) boil-off and meteoroid
		equation, days, planet capture
1, 2, 3	TEX3	Exposure time (t) boil-off and meteoroid
		equation, days, Earth depart
1	WKl	Constant K in tankage equation, kg,
,		planet depart
1, 2, 4	WK2	Constant K in tankage equation, kg, planet
		capture
1, 2, 3	WK3	Constant K in tankage equation, kg, Earth
,		depart
1, 2, 3, 4	*	An asterisk in any column (1-72) will termi-
		nate the reading of the inert data and
		execution will begin

APPENDIX B

OUTPUT PARAMETERS

The following output will appear for each phase of the mission computed.

Variable name	Description
Frainca	Optimum number of engines
Engines Thrust	Total thrust, 1b
Engine weight	Total engine weight, lb
VINF	V _m , km/sec
VGL	Gravity losses, km/sec
DEL V	ΔV including gravity losses,
DELL V	km/sec
Burn time	Stage burn time, sec
Isp	Stage Isp, sec
A	Inert fraction (exclusive of engine wt) $\equiv W_T/W_P$
MUL	Payload fraction $\equiv W_{\text{L}}/W_{\text{O}}$
Tanks	Number of tanks for that stage
Payload	Total stage payload, 1b
W TANK	Weight of all inerts except
	engine ($W_{T} + W_{BO} + W_{I} + W_{MM}$),
W FUEL	Weight of propellant used, lb
GRØSS WT	Gross weight, 1b
P '	Propulsion factor $\equiv 1/\mu L$
T/W	Stage initial thrust to weight
MID Fuel	Midcourse correction penalty, 1b
LIFE WT	Life support weight, 1b
THETA	Angle between original line of apsides and departure asymptote
EX.MØD	Excursion module weight, 1b
Tank	$M_{\rm TP}/M_{ m P}$
Boil off and insulation	$(W_{BO} + W_{I})/W_{P}$
Meteoroid shield	W _{MM} /W _P

APPENDIX C

EXAMPLE PROBLEMS

Included in this section are sample runs of a manned roundtrip, an unmanned orbiter, an unmanned flyby, and a capture phase only. It is noted that an asterisk card should appear between the mission input data and the system inert parameter data.

In the first example, nuclear propulsion was used at all phases; however, the thrust level of an individual engine was different. Planet departure and capture was performed with a small 75,000 lb thrust engine while the Earth departure phase used a 200,000 lb thrust engine. The input SEARCH = 1 was used allowing the number of engines to be optimized. The operating time limit is set to 1,000 sec, and the number of engines per tank NET1 = NET2 = NET3 = 2.0.

The program increased the number of engines to two for the planet departure phase and to three for the planet capture phase because fewer engines exceeded the operating time constraint.

The optimization indicates three engines, for the Earth departure phase produced the minimum total gross weight while remaining within the operating time limit. The separate inert fraction for tankage, boil off and insulation, and meteoroid shielding are output for the user's reference. Note that the boil off and insulation fraction are zero for the Earth departure phase because TEX3 = 0.0 (the exposure time) was assumed.

Example II is for a Mercury orbiter mission. Note that the planet parameters RAP, RPP, RGP, and GSP have been changed to those for Mercury. The parameter from the input list with a mode 2 designation only have been supplied. The engine operating time limit was not specified and the 1800 sec built in was used. This example will have one tank only since the number of engines per tank NET2, NET3 was not read in. The output consists only of two phases printed because no planet departure phase was computed. The input value MØDE = 2 was required to accomplish this orbiter mission.

Example III is a flyby to Mercury. The value MØDE = 3 is read in and only those input parameters for mode 3 are needed. The output as noted will consist of only an Earth departure phase. The inert fractions printed show a value for the tankage while the boil off and insulation and meteoroid shielding are zero. The boil off and insulation are zero as TEX3 (exposure time) was set to 0.0 and the meteoroid shielding is zero, indicating the tankage will afford the needed meteoroid shielding based on the scaling law. TEX3 may be input as the assembly time in Earth orbit for manned mission or the parking orbit time for unmanned missions.

SAMPLE MARS STOPOVER MISSION

DEPARTURE FROM PLANET

ENGINES THRUST ENG. WT VINF VGL DEL.V BURN TIME ISP A MUL TANKS 150000.0 37400.0 6.920 0.0712 5.1502 855.75 850.0 0.262 0.3059 1.0

PAY LOAD W TANK W FUEL GROSS WT P T/W MID FUEL LIFE WT THETAP 101640.0 40061.2 153119.0 332220.2 3.269 0.4515 1840.0 7800.0 114.6

INERT FRACTION A CONSISTS OF TANK=0.136192 BOIL OFF + INSULATION=0.080044 METEROID SHIELD=0.04540

CAPTURE PHASE

ENGINES THRUST ENG. WT VINF VGL DEL.V BURN TIME ISP A MUL TANKS
3 225000.0 56100.0 3.590 0.0265 2.5982 796.66 850.0 0.258 0.5918 2.0

PAY LOAD W TANK W FUEL GROSS WT P T/W EX MOD THETAP
466720.2 54540.2 211172.9 787763.9 1.690 0.2856 134000.0 -257.9

INERT FRACTION A CONSISTS OF TANK=0.144018 BOIL OFF + INSULATION=0.066249 METEROID SHIELD=0.04801

IMERT FRACTION A CONSISTS OF TANK=0.126454 BOIL OFF + INSULATION=0.000000 MFTEROID SHIELD=0.00000

DEPARTURE FROM EARTH

ENGINES THRUST ENG. NT VINF VGL DFL.V BURN TIME ISP A MUL TANKS 3 600000.0 94710.0 2.865 0.0558 3.6006 736.33 850.0 0.126 0.541> 2.0

PAY LOAD W TANK W FUEL GROSS WT P T/W MID FUEL LIFE WT THETAP 808919.2 66260.7 523990.0 1493879.9 1.847 0.4016 15755.3 5400.0 174.4

EXAMPLE OF INPUT FOR ORBITER MISSION (MODE=2)

MODE=2,

EM2=312.0, ET2=25000.0, NOE2=6,

EM3=28700.0, ET3=200000.0, NOE3=1,

12=450.0, 13=850.0,

V8C02=8.04, V8C03=11.47,

MCPF=1.02,

MPL=10000.7,

RAF=1.036, RPE=1.036,

RAP=1.041, RPP=1.041, RGP=2420.0, GSP=.00372,

SEARCH=1, ACOMP=2,

**

INPUT FOR INERT SUBROUTINE
SIG2=.077, SIG3=.077,

AT2=.10, AT3=.10,

B02=.034, B03=.034,

CM2=.06, CM3=.06,

TEMP2=156.0, TEMP3=156.0,

HEAT2=108.1, HEAT3=108.1,

TEX2=130.0, TEX3=0.0,

MX2=500.0, WX3=500.0,

SIG2=.33,

EMP2=104.0,

HEAT2=104.0,

HEAT2=104.0,

HEAT2=104.0,

HEAT2=005.5,

**

SAMPLE MERCURY ORBITER MISSION

CAPTURE PHASE

ENGINES THRUST ENG. WT VINF VGL DEL.V BURN TIME ISP A MUL TANKS 2 50000.0 686.4 8.040 0.0614 6.1726 487.98 450.0 0.131 0.1385 1.0

PAY LOAD W TANK W FUEL GROSS WT P T/W EX MOD THETAP 10000.0 7141.7 54404.0 72180.8 7.218 0.6927 0.0 -271.3

INERT FRACTION A CONSISTS OF TANK=0.086059 BOIL OFF + INSULATION=0.036615 METEROID SHIELD=0.00860 DEPARTURE FROM EARTH

ENGINES THRUST ENG. WT VINF VGL DEL.V BURN TIME ISP A MUL TANKS 200000.0 28700.0 11.470 0.3081 8.4223 981.14 850.0 0.128 0.2036 1.0

PAY LDAD W TANK W FUEL GROSS WT P T/W MID FUEL LIFE WT THETAP 74010.6 29652.0 231194.2 363556.8 4.912 0.5501 1451.2 0.0 138.5

INERT FRACTION A CONSISTS OF TANK=0.128256 BOIL OFF + INSULATION=0.000000 METEROID SHIELD=0.000000

SAMPLE MERCURY FLYBY MISSION

DEPARTURE FROM EARTH

EXAMPLE OF INPUT FOR CAPTURE PHASE (MODE=4)
VTIT=60H EXAMPLE CAPTURE PHASE ONLY
MODE=4,
EX = 312.0, ETZ = 25000.0, NOE2 = 6,
12 = 450.0,
V8C02 = 8.04,
WPL = 10000.0,
RAE = 1.036, RPE = 1.036,
RAP = 1.041, RPP = 1.041, RGP = 2420.0, GSP = .00372,
SEARCH = 1, ACOMP = 2,
*
INPUT FOR INERT SUBROUTINE (POO7IN)
ATZ = .10,
BO2 = .034,
CM2 = .06,
TEX = 2500.0,
SIG 2 = .33,
TEMP = 104.0,
HEAT = 104.0

EXAMPLE CAPTURE PHASE ONLY

CAPTURE PHASE

ENGINES THRUST ENG. WT VINF VGL DEL.V BURN TIME ISP A MUL TANKS 1.0

PAY LOAD N TANK W FUEL GROSS WT P T/W EX MOD THETAP 10000.0 7141.7 54404.0 72180.8 7.218 0.6927 0.0 7.271.3

INERT FRACTION A CONSISTS OF TANK=0.086059 BOIL OFF + INSULATION=0.036615 METEROID SHIELD=0.00860

APPENDIX D - PROGRAM LISTINGS

```
MAIN CONTROL PROGRAM FOR REQUIRED MASS IN ORBIT COMPUTATION COMMON ALTO, PS11, 112, GE, GM, ALT, T(701, PS12, K, GS COMMON/BOXGL/ DVI, FW12, V8CO, VSU, DVGL, LEVEL, TST, RG, RLTS, AS COMMON/BOXGL/ JA2, A3, A12, 1A8C, ACOMP, S1G1, S1G2, S1G3, AT1, 801, CM1, AT2 1, 802, CM2, AT3, B03, CM3, TEMP1, TEMP2, TEMP3, HEAT1, HEAT2, HEAT3, TEX1, TEX2 2, TEX3, WK1, WK2, WK3, TN DIMENSION VTIT(18), VIN8(20), MF8(10), THOL8(10), TVIN8(10), TMF8(10), T1 THOL8(10), T99(10), TT99(10) REAL 111, 112, MF12, ML10, ML11, ML12, ML1, K, KICK, MUL, MFST, MF8, 11, 12, 13, 1MCPF, MCFM, KICK1, KICK2, KICK3, MCPF1, MCFW1, LEGT1, LEGT2, LSD, NET1, NET2, ZNET3, NET
С
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6
7
8
9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       10
11
12
13
14
                                    2NFT3.NFT
                                       CNEIS, NEI
INTEGER SEARCH, ACOMP, OKNOE
EXTERNAL DIVE
MCPF=1.0
MCPF1=1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     16
17
18
                                        ACOMP=1
LEVEL=2
                                          RAE=1.04355
                                        RPE=1.04355
RGE=6375.445
GSE=.980665E-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     19
20
21
                                          PSI=0.0
SEARCH=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     22
23
24
25
26
27
                                          KICK1=1.0
                                          KICK2=1.0
KICK3=1.0
                                          TLT1=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     28
29
30
                                          TLT2=0.0
TLT3=0.0
                                           I AFRD=1
                                        NOE 1= 1
NOE 2= 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
                                           NOF 3= 1
                                          MDDE=1
                                        NET1=-1.0
NET2=-1.0
NET3=-1.0
TN=1.0
                                             PEN=.1
                                           TIIMIT=1800-0
                                          FELLOW=0.0
LEGT1=0.0
                                           LEGT2=0.0
LSD=0.0
TC=3600.0
         645
                                           GE=.980665E-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       46
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       47
48
49
51
52
53
55
55
57
58
                                             VB=0.0
                                          DEG=1.745329E-2
PY=180.0*DEG
TERROR=1.0E-6
                                           IABC=1
DTBACK=2.0
                                           TIME1=0.0
DELTI=4.0
                                             K = 1.0
                                             WGMIN=1.0F+10
     ION1=2
ION2=2
ION3=2
IOX3=2
IO
                                             IOK2=2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        59
60
61
62
63
64
65
66
67
67
77
77
77
77
77
77
77
78
79
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        81
82
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        83
84
85
                                             WL=WPL
MCFW1=(WL+MCPF1)-WL
                                             WL=WL*MCPF1
WLSE1=LEGT1*FELLOW*LSD
WLSE2=LEGT2*FELLOW*LSD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        86
87
88
                                             WL=WL+WLSE1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          89
90
91
92
                                             WP=WL
NOE=NOE1
                                             WE = EW1 * FLOAT (NOE)
THRUST = ET1 * FLOAT (NOE)
```

```
EW=EW1
                                                                                                                                                                                                                                                                                                94
95
96
97
98
                   V8C0=V8C01
A12=A1
                    112=11
                     KICK=KICKI
                   NET=NET1
TLTSI=TLT1
GS=GSP
                                                                                                                                                                                                                                                                                                99
                                                                                                                                                                                                                                                                                            100
101
                   RG=RGP
RP=RPP
RA=RAP
                                                                                                                                                                                                                                                                                              102
                                                                                                                                                                                                                                                                                            103
                    DELT=DELTI
PSI2=PSI*DEG
FW12*THRUST/(WL+WP+WE)
                                                                                                                                                                                                                                                                                            105
106
107
   DVGL=0.0
GD TO (9999,3333,4444,3333),MODE
3333 WG=WPL
                                                                                                                                                                                                                                                                                             108
                                                                                                                                                                                                                                                                                             110
    WEM=0.0
GO TO 1113
4444 IAERO=2
                                                                                                                                                                                                                                                                                             111
                                                                                                                                                                                                                                                                                             113
                   AEROP=1.0
WEM=0.0
                                                                                                                                                                                                                                                                                            114
   MEM=0.0

MG=WPL

GO TO 1113

9999 IF (NET-LE.0.0)GO TO 25

TN=FLOAT(NOE)/NET

TN=TN-.9

IOTN=TN
                                                                                                                                                                                                                                                                                            116
117
118
                                                                                                                                                                                                                                                                                            119
120
121
   IOTN-TN
TN=1OTN
GO TO 9911
25 TN=1.0
9911 CALL INERT(WP,TANK,BOIS,SFMM)
IF(NOE.EO.1) GO TO 27
WE=FLOAT(NOE)*PEN*EW+FLOAT(NOE)*EH
THRUST=FLOAT(NOE)*ET
                                                                                                                                                                                                                                                                                             123
                                                                                                                                                                                                                                                                                             124
                                                                                                                                                                                                                                                                                             126
127
                                                                                                                                                                                                                                                                                              128
                     GO TO 21
WE=EW
THRUST=ET
                                                                                                                                                                                                                                                                                             129
130
131
       27
                   THRUS |= E |
GO TO 21
GO TO (221,66,221), [ABC
WEWL=WE/NL
TLTSR=TLTS1*DEG
GM=GS*RG*RG
VC=SQRT(GM/(RP*RG))
                                                                                                                                                                                                                                                                                              132
133
134
                                                                                                                                                                                                                                                                                             135
136
137
                     AS=.5+(KICK+RP+RA)
                                                                                                                                                                                                                                                                                              138
                   EPS=(RA-KICK*RP)/(RA+KICK*RP)
PS=AS*RG*(1.0-EPS*EPS)
RLTS=PS/(1.0+EPS*COS(TLTSR))
RLTS=SQRT(GM/PS)*EPS*SIN(TLTSR)
VSU=SQRT((GM/PS)*EPS*SIN(TLTSR)
VSU=SQRT((GM/CAS*RG))*(1.*2.*EPS*COS(TLTSR)*EPS*EPS)/(1.-EPS*EPS))
DVI=SQRT((V8CO**2)*(2.0*GM/(RLTS )))-VSU
CALL INERTIMP,TANK,BOIS,SFMM)
DVIMGL=DVI+DVGL
BMFST = EXP((-DVIMGL)/(I12*GE))
BPROP = (1.0+MEML)/(BMFST*(1.0+A12)-A12)
FW12 = THRUST/(BPROP*WL)
MP2 = (1.0-BMFST) * (BPROP*ML)
IF(ABS(1.0-(WP/WP2))-0.01) 88,88,89
WP=WP2
                                                                                                                                                                                                                                                                                            139
140
141
142
                                                                                                                                                                                                                                                                                              144
                                                                                                                                                                                                                                                                                              145
146
147
                                                                                                                                                                                                                                                                                              148
                                                                                                                                                                                                                                                                                              150
                                                                                                                                                                                                                                                                                              151
152
        IF(ABS(1.0-(WP/WP2))-0.01) 88,88,89

89 WP=WP2
GD TO 87

88 MFST = BMFST
FM12=THRUST/(BPROP*WL)

2 TIME=TIMEI

75 ALTO=FW12*GE
XX3=GM/(PS**3)
THOT=SQRT(XX3 )*((1.0+EPS*COS(TLTSR))**2)*(VB/RLTS)
GO TO (166,566), LEVEL

66 CALL GLOSS
TST=WP*I12/THRUST
DVIWGL=DVI*DVGL
        89
                                                                                                                                                                                                                                                                                              153
154
155
                                                                                                                                                                                                                                                                                              157
158
                                                                                                                                                                                                                                                                                              159
160
161
                     DVIWGL=DVI+DVGL
MFST=EXP((-DVIWGL)/(112*GE))
IF(1ABC.EQ.2) MFST=1.0/MFST
                                                                                                                                                                                                                                                                                              163
                                                                                                                                                                                                                                                                                              164
                     GO TO 60
FOLLOWING IS SETUP FOR INTEGRATION ROUTINE
                                                                                                                                                                                                                                                                                              166
167
C
566
                    T(2)=TIME
T(3)=DELT
T(4)=0.0
T(5)=RLTS
T(6)=THDT
T(7)=RDLTS
                                                                                                                                                                                                                                                                                              168
                                                                                                                                                                                                                                                                                              169
170
171
                                                                                                                                                                                                                                                                                              172
173
174
                    T(7)=RDLTS
T(8)=0.0
CALL INT(T,5,0,TERROR,0,0,0 ,0,0,DIVE)
CALL INTW
VSQ=T(7)*T(7)*((T(5)*T(6))**2)
V=SQRT(VSQ)
CAPE=.5*VSQ-GM/T(5)
H=T(5)*T(5)*T(6)
P=H=H/GM
E=SQRT(1.0*(2.0*CAPE*P/GM))
GAMMa=ATAN(T(7)/(T(5)*T(6)))
TOP=T(7)/(T(5)*T(6))
                                                                                                                                                                                                                                                                                              174
175
176
177
178
179
                                                                                                                                                                                                                                                                                              180
181
                                                                                                                                                                                                                                                                                              182
```

```
185
            BOT=1.0-(T(5)/P)
                                                                                                                                                                                                                                     186
187
            BU = 1.0-((5)/P/)
THETA=RTN(TOP,BOT)
IF(THETA.LT.0.0) THETA=THETA+360.0*DEG
MF12=1.0-((FW12*T(2))/(112 ))
FMBO=FW12/MF12
IF(CAPE)10,11,11
                                                                                                                                                                                                                                     188
                                                                                                                                                                                                                                     189
190
            IF(CAPE)10,11,11

VINF=0.0

GO TO 50

VIF2=2.0*CAPE

VINF=SQRT(VIF2)

IF(VINF-V8CO)50,50,51

HOLD2=T(2)
                                                                                                                                                                                                                                      191
                                                                                                                                                                                                                                      193
11
                                                                                                                                                                                                                                     194
195
196
  50
            HOLD2=T(2)
HOLD4±T(4)
HOLD5=T(5)
HOLD6=T(6)
HOLD7=T(7)
HOLD8=T(8)
                                                                                                                                                                                                                                      197
198
                                                                                                                                                                                                                                      199
                                                                                                                                                                                                                                      200
201
202
            GD TO 55
T(2)=HOLD2
T(3)=DTBACK
T(4)=HOLD4
                                                                                                                                                                                                                                      203
                                                                                                                                                                                                                                      205
                                                                                                                                                                                                                                      206
207
             T(5)=HOLO5
T(6)=HOLD6
                                                                                                                                                                                                                                      208
209
             T(7)=HOLO7
T(8)=HOLO8
KS=1
                                                                                                                                                                                                                                      210
            KS=1
CALL INT(T,5,1,0,0,0,0,0,0,0,0)VE)
CALL INTM
VSQ=T(7)*T(7)*((T(5)*T(6))**2)
V=SQRT(VSQ)
CAPE=.5*VSQ-GM/T(5)
IF(CAPE.t.0.0) GO TO 53
H=T(5)*T(5)*T(6)
P=Hau/GM
                                                                                                                                                                                                                                      211
212
213
214
215
                                                                                                                                                                                                                                      216
                                                                                                                                                                                                                                       218
219
220
              221
                                                                                                                                                                                                                                       222
               THEI A=AKINT 10F, BDT 1

IF(THETA-LT.0.0) THETA=THETA+360.0 DEG

REF=THETA-T(4)-TLTSR

ASS=90.0 DEG+ASIN(1.0/E)
                                                                                                                                                                                                                                       224
                                                                                                                                                                                                                                        226
                                                                                                                                                                                                                                       227
228
               TOUT7=(ASS-REF)/DEG
MF12=1.0-( (FW12*T(2))/(I12 ))
VIF2=2.0*CAPE
                                                                                                                                                                                                                                        229
               VINF=SQRT(VIF2)
                                                                                                                                                                                                                                       231
232
233
               IF (KS-5)54.54.56
    54 VIN8(KS)=VINF
MF8(KS)=MF12
THOL8(KS)=T(2)
                                                                                                                                                                                                                                       234
235
                T99(KS)=TOUT7
                                                                                                                                                                                                                                       236
237
238
               KS=KS+1
              KS=KS+1

GO TO 53

DO 57 IJ=1,4

TV1N8(IJ)=VIN8(IJ+1)

TMF8(IJ)=MF8(IJ+1)

TTHDL8(IJ)=THDL8(IJ+1)

TT99(IJ)=T99(IJ+1)
                                                                                                                                                                                                                                       239
240
241
              TY9(1J)=199(1J

CONTINUE

TVIN8(5)=VINF

TMF8(5)=MF12

TTHOL8(5)=T(2)

TT99(5)=TOUT7
                                                                                                                                                                                                                                        244
245
                                                                                                                                                                                                                                        246
247
               DO 58 I4=1,5
VIN8(I4)=TVIN8(I4)
MF8(I4)=TMF8(I4)
                                                                                                                                                                                                                                        249
250
251
                THOL8(I4)=TTHOL8(I4)
T99(I4)=TT99(I4)
CONTINUE
                                                                                                                                                                                                                                         252
253
254
      58
              DNN4=0.0

IF(VINF-VBCO)53,53,59

CALL TAINT(VIN6,MF8,V8CO,MFST,5,2,NIR,DNN4,THOL8,TST,T99,TTTOT)
GO TO(61,62,61),IABC
PROP=(1.0+NEHL)/(MFST+(1.0+A12)-A12)
WIGUS=PROP+NL
FWTST=THRUST/MIGUS
IF(ABS(FW12-FWTST)-.01)70,70,71
FW12=FWTST
WPH0=1.0-MFST
WD=ROP+NL
HD=ROP+NL
HD=ROP+NL
                  DNN4=0.0
                                                                                                                                                                                                                                         255
256
257
                                                                                                                                                                                                                                         258
259
                                                                                                                                                                                                                                         260
                                                                                                                                                                                                                                         261
262
                                                                                                                                                                                                                                         263
264
265
               MY=MYWU*MU
CALL INERT(WP, TANK, BOIS, SFMM)
GO TO 75
GO TO(777,62,63), IABC
MPWO=1.0-MFST
                                                                                                                                                                                                                                         266
267
268
                                                                                                                                                                                                                                          269
270
271
                WTWO=WPWO*A12
MUL=1.0/PROP
                                                                                                                                                                                                                                          272
273
                 WO=PROP*WI
                 WT=WTWO+WO
                 WE = WEWI + WI
                 VEMOS=V8CO/29.785
                                                                                                                                                                                                                                           276
```

```
DV=I12+GE+(-ALOG(MFST))
                                                                                                                                                             278
279
          TB=TST
         MC=MU
          VGL=DV-DVI
          ISAVE=1
          IF(TB.LT.TLIMIT) GO TO 22
                                                                                                                                                             282
          NOE=NOE+1
          I DK 1 = 2
                                                                                                                                                             284
         GO TO 9999
GO TO(110,666),IDK1
                                                                                                                                                             285
                                                                                                                                                             286
287
          ISAVE=2
         ISAVE=2
GD TO 176
IF(WG-WGMIN)176,102,102
IF(NOE.LE.1) GO TO 111
                                                                                                                                                             288
 110
                                                                                                                                                             290
         WGMIN=WG
GO TO 9999
WGMIN=1.0E+10
                                                                                                                                                             292
                                                                                                                                                             293
 102
         WRITE(6,600)
FORMAT(1H0,40X,21HDEPARTURE FROM PLANET)
                                                                                                                                                             295
          WRITE(6,601)
         FORMAT(1HO,3X,7HENGINES,3X,6HTHRUST,5X,7HENG. HT,4X,4HVINF,4X,5HVG
LL ,4X,5HDEL.V,4X,9HBURN TIME,4X,3HISP,7X,1HA,7X,3HMUL,3X,5HTANKS)
WRITE(6,602)OKNDE,OKTHR,OKHE,V8CO,OKVGL,OKDV,OKTB,112,OKA12,OKMUL,
300
                                                                                                                                                             301
                                                                                                                                                             303
                                                                                                                                                             306
                                                                                                                                                             307
                                                                                                                                                              309
                                                                                                                                                              311
                                                                                                                                                              314
                                                                                                                                                              316
317
                                                                                                                                                              318
319
           NOE=NOE2
                                                                                                                                                              320
           EW=EW2
           WE=EW2+FLOAT(NOE)
                                                                                                                                                              322
           THRUST=ET2*FLOAT(NOE)
                                                                                                                                                              323
          NET=NET2
A12=A2
KICK=KICK2
                                                                                                                                                              324
325
326
                                                                                                                                                              327
328
           112=12
          IABC=2
DTBACK=-2.0
           WL1=WG+WEM
                                                                                                                                                              331
           WL=WG
WP=2.0E5
           CALLINERT(WP, TANK, BOIS, SFMM)
WTGUS=WP*A12
FW12=THRUST/(WL+WTGUS+WE+WEM)
                                                                                                                                                              334
                                                                                                                                                              335
336
          FH12=THRUST/(HL+WTGUS+WE+WEM)
TLTSR=TLTSI+DEG
GM=GS*RG*RG
VC=SQRT(GM/(RP*RG))
AS=,5*(KICK*RP+RA)
EPS=(RA-KICK*RP)/(RA+KICK*RP)
VP=SQRT((2.0*GM/RG)*((1.0/RP)-(1.0/(2.0*AS))))
PS=AS*RG*(1.0-DE*SEPS)
RDLTS=SQRTI(GM/PS)*EPS*SIN(TLTSR)
RLTS=PS/(1.0+EPS*COS(TLTSR))
VSU=SQRTI(GM/(AS*RG))*(1.*2.*EPS*COS(TLTSR)+EPS*EPS)/(1.*EPS*EPS))
DVI=SQRTI(VBCO**2)*(2.0*GM/(RLTS)))-VSU
UVGL=0.0
                                                                                                                                                               337
                                                                                                                                                               340
                                                                                                                                                               341
342
                                                                                                                                                               347
          143
                                                                                                                                                               350
                                                                                                                                                               352
                                                                                                                                                               353
354
355
    WF=(1.0-BHFS))*(BPRUF*WLT)
WTG1=WP*A12
FN12=THRUST/(WL+WTG1+WE+WEM)
IF(ABS(1.0-(WTGUS/WTG1))-.01)141,141,142
142 WTGUS=WTG1
                                                                                                                                                               358
                                                                                                                                                               360
                                                                                                                                                               361
           GO TO 143
WTGUS=A12*WP
                                                                                                                                                               362
                                                                                                                                                               363
364
           MEST=1.0/BMEST
                                                                                                                                                               365
366
367
           GO TO 9999
WLC=WL+WTGUS+WE+WEM
            FW12=THRUST/WLC
           GO TO 2
                                                                                                                                                               368
```

```
62 PROP=(1.0+WE/WL1)/((1.0/MFST)*(1.0+A12)-A12)
                                                                                                                                                                                 369
370
371
372
          WBO=PROP+WL1
          WPC=ABS(WBO-WLC)
         WPC=ABS(WBD=HLC)
WTC=WPC*A12
IF(ABS(1.0-WTC/WTGUS)-.01)65,65,67
CALL INERT(WPC, TANK, BOIS, SFMM)
WTGUS=WTC
                                                                                                                                                                                 375
                                                                                                                                                                                 376
377
          GO TO 66
         PROP=(1.0+WE/WL1)/((1.0/MFST)*(1.0+A12)-A12}
MUL=1.0/PROP
WO=PROP*WL1
  65
                                                                                                                                                                                  378
                                                                                                                                                                                 379
380
          WP=WPC
WT=WTC
                                                                                                                                                                                 381
382
         DV=112*GE*(ALOG(MFST))
VEMOS=V8CO/29.785
                                                                                                                                                                                  383
          WG=WO
TB=ABS(TST)
                                                                                                                                                                                  385
                                                                                                                                                                                  386
          ISAVE=3
IF(TB.LT.TLIMIT) GO TO 23
NOE=NOE+1
                                                                                                                                                                                  387
                                                                                                                                                                                  388
                                                                                                                                                                                 389
390
391
         IOK2=2
GD TO 9999
GD TO(210,667),IOK2
                                                                                                                                                                                 392
393
394
395
          ISAVE=4
667
         GO TO 176
IF(WG-WGMIN)176,202,202
210
         WGMIN=WG
IF (NOE.LE.1) GO TO 211
NOE=NOE-1
                                                                                                                                                                                 396
397
398
201
         WTGUS=A12*(WL1-WEM)
GO TO 9999
WGMIN=1.0E+10
                                                                                                                                                                                  399
                                                                                                                                                                                  400
401
202
         WGMIN=1.0E+10

MRITE(6,508)

WGMIN=1.0E+10

FORMAT(1H0,40X,14HCAPTURE PHASE)

WRITE(6,601)

WRITE(6,601)

WRITE(6,602)OKNOE,OKTHR,OKWE,V8CO,OKVGL,OKDV,OKTB,112,OKA12,OKMUL,
                                                                                                                                                                                  402
403
404
508
                                                                                                                                                                                  405
406
407
10KTN
WRITE(6,613)
613 FORMAT(1H0,3X,8HPAY LOAD,4X,6HW TANK,6X,6HW FUEL,3X,8HGROSS WT,7X,
11HP,7X,3HT/W,5X,6HEX MOD,5X,6HTHETAP)
WRITE(6,604)OKWC,OKWT,OKWP,OKMG,OKP,OKFW,WEM,OKTT
IF(ACOMP.LE.1) GO TO 987
WRITE(6,605)OKTANK,OKBO,OKMM
                                                                                                                                                                                  408
409
                                                                                                                                                                                  410
411
412
                                                                                                                                                                                  414
987 IF(MODE.EQ.4) GO TO 645
IABC=3
WRITE(6,503)
503 FORMAT(1H0,39X,20HDEPARTURE FROM EARTH)
NOE=NOE3
                                                                                                                                                                                  415
                                                                                                                                                                                  416
417
                                                                                                                                                                                  418
           WE = EW3*FLOAT(NOE)
THRUST=ET3*FLOAT(NOE)
                                                                                                                                                                                  419
                                                                                                                                                                                  420
          EW=EW3
ET=ET3
NET=NET3
                                                                                                                                                                                  421
422
                                                                                                                                                                                  424
425
426
           V8C0=V8C03
           A12=A3
KICK=KICK3
           TLTSI=TLT3
I12=I3
                                                                                                                                                                                  427
428
429
           GS=GSE
           RG=RGE
RP=RPE
                                                                                                                                                                                  430
431
           RA=RAE
DELT=4.0
PSI2=0.0
                                                                                                                                                                                  432
                                                                                                                                                                                  433
434
           DTBACK=2.0
MCFW=(WG*MCPF)-WG
WG=WG*MCPF
                                                                                                                                                                                  435
           WG=WG*MCPF
WL=WG
WL=WL+WLSE2
WP=WL
FW12=THRUST/(WL+WP+WE)
                                                                                                                                                                                  438
439
                                                                                                                                                                                  440
441
          DVGL=0.0

G0 T0 9999

IF(MDDE.EQ.3) GO TO 987

WRITE(6,500)

FORMAT(IHO,39X,27HCAPTURE PHASE AERO BREAKING)

PLN=WG+WEM
                                                                                                                                                                                  442
443
444
445
446
447
 500
           PLW2=AEROP*PLW
HSW=PLW2-PLW
WRITE(6,501)
                                                                                                                                                                                   448
           FORMAT(1HO,3x,7HPAYLOAD,5x,6HEX.MOD,4X,8HHEAT SH.,4X,8HGROSS WT)
WRITE(6,502)PLW,WEM,HSW,PLW2
FORMAT(3X,F9.1,3X,F8.1,3X,F8.1,3X,F9.1)
                                                                                                                                                                                   451
452
 501
 502
                                                                                                                                                                                   453
          WG=PLW2
GO TO 987
WPWO=1.0-MFST
WTWO=WPWO+A12
MUL=1.0/PROP
                                                                                                                                                                                   454
455
456
                                                                                                                                                                                   457
458
           WO=PROP*WL
WP=WPWO*WO
                                                                                                                                                                                   459
```

	wT=wTwO+wO	
	WE=WEWL+WL	461
	VEMOS=V8CO/29.785	462
	DV=112+GE+(-ALOG(MFST))	463
	TB=TST	464
	₩G=₩O	465
		466
	VGL=DV-DVI ISAVE=5	467
		468
	IF(TB.LT.TLIMIT) GO TO 24	469
	NOE = NOE + 1 IOK3 = 2	470
		471
	GD TO 9999	472
24	GO_TO(310,668),IOK3	473
668	I SAVE=6	474
	GO TO 176	475
310	IF(WG-WGMIN)176,302,302	476
301	IF (NOE.LE.1) GO TO 311	477
	NOE=NOE-1	478
	HGMIN=HG	479
	GO TO 9999	480
302	NOE=NDE+1	481
	IOK3=2	482
	WGMIN=1.0E+10	483
	GD TO 9999	484
311	WRITE(6,601)	485
	WGMIN=1.0E+10	486
	WRITE(6,602)OKNOE,OKTHR,OKWE,V8CO,OKVGL,OKDV,OKTB,112,OKA12,OKMUL,	487
	LOKTN	488
	WRITE(6,623)	489
623	FORMAT(1HO, 3X, 8HPAY LOAD, 4X, 6HW TANK, 6X, 6HW FUEL, 3X, 8HGROSS WT, 7X,	490
	11HP, 7X, 3HT/W, 5X, 8HMID FUEL, 5X, 7HLIFE WT, 5X, 6HTHETAP)	491
	WRITE(6,604)OKWL,OKWT,OKWP,OKWG,OKP,OKFW,OKMF2,OKWL2,OKTT	492
	IF (ACOMP.LE.1) GO TO 99	493
	WRITE(6,605)OKTANK,OKBO,OKMM	494
99	GD TD 645	495
176	o OKNOE=NOE	496
	OKTHR=THRUST	497
	OKWE=WE	498
	OKVGL=VGL	499
	OKDV=DV	500
	OKTB=TB	501
	OKA12=A12	502
	OKMUL=MUL	503
	OKTN=TN	504
	OKWL=WL	505
	OKMC=MF1	
	OKWT=WT	507
	OKWP=₩P	508
	OKWG=WG	509
	OKP=PROP	510
	OKFW=THRUST/WG	511
	OKMF1=MCFW1	512
	OKWLS=WLSE1	513
	OKTT=TTTOT	514
	OKTANK=TANK	515
	OKBO=BOIS	516
	OKMM=SFMM	517
	OKMF2=MCFW	518
	OKWL2=WLSE2	519
	GO TO (101,111,201,211,301,311), ISAVE	520
	END	521

C APPROXIMATE GRAVITY LOSS ROUTINE SUBROUTINE GLOSS THIS ROUTINE IS AN APPROXIMATION FOR THE GRAVITY LOSSES, AND IS USED ONLY FOR LEVEL=1. WHEN LEVEL=2 THE GRAVITY LOSSES ARE SET TO O AND RETURNED TO THE MAIN PROGRAM WHERE THE TRUE GRAVITY LOSSES ARE FOUND BY INTEGRATION OF THE EQUATIONS OF MOTION. THIS ROUTINE MAY BE REPLACED BY THE USER WITH HIS OWN APPROXIMATION IF DESIRED, TO DO THIS ALL NEEDED VALUES MUST BE PLACED IN THE COMMON BLOCK JBOXCL/ HERE AND IN THE MAIN PROGRAM THE VALUE OF THE GRAVITY LOSSES MUST BE PLACED IN DVGL BEFORE RETURN TO THE MAIN ROUTINE 0000000 10 13 14 15 COMMON ALTO,PSI1,112,GE,GM,ALT,T(70),PSI2,K,GS
COMMON/BOXGL/ DVI,FW12,V8CO,VSU,DVGL,LEVEL,TST,RG,RLTS,AS COMMON/BOXGL/ DV1,FW12,V8CO,VSU,DV
REAL 112
GO TO (2,5), LEVEL
DVG1=.036+.0693+((V8CO/VSU)**2)
FACT1=1.0/(AS*AS)
FACT2=(GS/GE)**2
P1=FW12**.5
P2=112*6E
P5=DVG1*DVG1*VSU*FACT1*FACT2/(P1*P1)
P6=EXP(DV1/P2)
G=DVG1
P9=1.0+(P6*EXP(G/P2))
PART1=2.0*P5*P6*EXP(G/P2)/P2
PART2=P9**3
FDFG=G-(P5/(P9*P9))
FPRIM=1.0+(PART1/PART2) COMMON/BOXGL/ 2 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 FPRIM=1.0+(PART1/PART2) G1=G-(FOFG/FPRIM) IF(ABS(1.0-G1/G)-.001) 25,25,26 G=G1 GO TO 9 26 DVGL=.5*(G1+G) RETURN 34 35 END

THIS IS THE DERIVATIVE ROUTINE FOR THE INTEGRATION ROUTINE
SUBROUTINE DIVE
COMMON ALTO,PSI1,112,GE,GM,ALT,T(70),PS12,K,GS
3
DEG=.01745329
REAL K,I12
TOP=T(5)*T(6)
BOT=T(7)
SIT=ARTN(TOP,BOT)
IF(SIT_LT,0.0) SIT=SIT+360.0*DEG
PSI1=PS12*K*SIT
PRT1=T(2)/(I12*GE)
PRT2=1.0/ALTO
ALT=1.0/(PRT2-PRT1)
X1=T(5)*T(6)*T(6)*T(6)*(GM/(T(5)*T(5)))
X1=T(5)*T(6)*T(6)*T(6)*T(5)*T(5))
T(12)=XX1+XX2
T(11)=(ALT*SIN(PSI1)/T(5))-{2.0*T(7)*T(6)}/T(5)
T(19)=T(6)
T(10)=T(7)
T(13)=0.0
RETURN
END
22

```
INERT SUBROUTINE
С
                      SUBROUTINE INERT(WPI, TANK, BOIS, SFMM)
                                                                                                                                                                                                                                                                                                                          0000000
                    SUBROUTINE INERT COMPUTES THE INERT FRACTION FOR TANKAGE, BOIL-OFF AND INSULATION, AND METEROID PROTECTION (INCLUDES WHIPPLE BUMPER) EFFECT. ACOMP-1 INERT FRACTION IS INPUT CONSTANT ACOMP-2 INERT FRACTION IS COMPUTED. IABC IS CONTROL FOR PHASE OF MISSION BEING COMPUTED 1=PLANET DEPARTURE, 2=PLANET CAPTURE, 3=EARTH DEPARTURE
                 COMMON/BOX1/A1, A2, A3, A12, IABC, ACOMP, SIG1, SIG2, SIG3, AT1, B01, CM1, AT2
1, B02, CM2, AT3, B03, CM3, TEMP1, TEMP2, TEMP3, HEAT1, HEAT2, HEAT3, TEX1, TEX2
2, TEX3, WK1, WK2, WK3, TN
INTEGER ACOMP
WPI=WPI*. 4535924
GO TO (1,2), ACOMP
GO TO (1,2), ACOMP
GO TO (3,4,5), IABC
A12=A1
GO TO 90
A12=A2
GO TO 90
A12=A3
GO TO 90
        1
3
                       GO TO 90
GO TO (7,8,9),1ABC
SIG=SIG1
                      A=AT1
B=801
C=CM1
                       TEMP=TEMP1
EL=HEAT1
EXTME=TEX1
                      EXTME=TE)
WK=WK1
GO TO 80
SIG=SIG2
A=AT2
B=BO2
                       C=CM2
TEMP=TEMP2
EL=HEAT2
                       EXTME=TEX2
                       WK=WK2
GO TO 80
SIG=SIG3
                       A=AT3
B=B03
C=CM3
                                                                                                                                                                                                                                                                                                                          80
81
                                                                                                                                                                                                                                                                                                                          82
83
                       TEMP=TEMP3
                       EL=HEAT3
                      EL=HEAT3

KK=WK3

TAU=A(ISIG**.533)

TANN=((TAU)*(TN**.1))/(WPI**.1)*(WK*TN)/WPI

BOT=(WPI**.33333)*(SIG**.666667)

BOIS=(B\007)*SORT(EXTME*TEMP/EL)

TOP=(EXTME**.25)/(SIG**(5.0/6.0))

TOP]=1.0/(WPI**(1.0/6.0))

SFMM=C*TOP*TOP1

IF(SFMM-TANK)30,30,31

SFMM=0.0
                                                                                                                                                                                                                                                                                                                          84
                                                                                                                                                                                                                                                                                                                          85
86
        80
                                                                                                                                                                                                                                                                                                                      87
88
89
90
91
92
93
94
95
96
97
98
99
                     IF(SFMM-TANK)30,30,31

SFMM=0.0

GD TO 91

WTEST=1.333333*TANK

IF(SFMM-WTEST)32,32,33

SFMM=SFMM-TANK

GD TO 91

WTESTZ=(16.0/3.0)*TANK

IF(SFMM-WTESTZ)34,34,35

SFMM=TANK/3.0

GO TO 91
        30
        33
                                                                                                                                                                                                                                                                                                                      101
        34
                                                                                                                                                                                                                                                                                                                       103
                       GO TO 91
SFMM=(SFMM/4.0)-TANK
A12=TANK+BOIS+SFMM
                                                                                                                                                                                                                                                                                                                       104
                                                                                                                                                                                                                                                                                                                      105
106
107
                       WWWP=WPI/.4535924
WPI=WPI/.4535924
RETURN
     90
110
                                                                                                                                                                                                                                                                                                                       1.08
                                                                                                                                                                                                                                                                                                                      110
```